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Abstract
The flow-induced microstructural distortions of dense colloidal dispersions
under steady shearing are derived within a recent first-principles approach to
the nonlinear rheology of colloidal fluids and glasses. The stationary structure
factor is discussed to leading orders in shear rate γ̇ . We find that shear affects the
stationary structure whenever the dressed Peclet/Weissenberg number Pe = γ̇ τ

becomes appreciable; here τ is the structural or α-relaxation time. Close to
vitrification, this predicts significantly larger shear distortions than expected
from considering the bare Peclet number Pe0; it compares γ̇ with the diffusion
time of a colloid at infinite dilution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dynamic light scattering [1], rheometry [2], microscopy [3], and Brownian dynamics
simulations [4] have revealed that colloidal dispersions undergo a glass transition upon
densification. Detailed comparisons of the observed structural (glassy) relaxation with first-
principles calculations from mode coupling theory (MCT) [5–7] have shown that many aspects
of this transition closely follow the MCT scenario of an idealized glass transition [8].

Dense colloidal dispersions also exhibit quite interesting behaviours under external shear
flow, which often have been linked with either flow-induced ordering phenomena, solvent-
induced (lubrication) interactions, and/or an approach to random close packing; for a recent
review of theoretical approaches see [9]. The viscosity strongly decreases even under small
applied steady shear rates (shear thinning) [10], and the microstructure as described by the
structure factor or pair correlation function gets distorted [11, 12]. Stationary states not
describable by a Gibbs–Boltzmann distribution function can easily be obtained, and sheared
dispersions thus present a model system for the study of driven (metastable) states far from
equilibrium.

Recently, an extension of MCT to systems under steady shearing was developed that unites
the fields of glass transition and rheology [13]. It predicts shear thinning, yielding of colloidal
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glasses, a speed up of structural relaxation under shear caused by advection of fluctuations, and
a dependence of the microstructure on shear rate. The latter can be expected to provide insights
into the microscopic mechanisms of particle rearrangements in fluid and glassy states under
strong shear. Specific to the theory is an integration through transients (ITT) approach that
enables one to derive stationary expectation values from transient time-dependent structural
correlations.

In this contribution, we present first results on the distorted stationary microstructure of
Brownian hard-sphere fluids to leading orders in the shear rate. This enables us to compare
our approach with previous theories, with experiments and with simulations. We find that
all existing microscopic theories severely failed to account for the magnitude of structural
deformation under shear at high densities, because the slowing down of the structural relaxation
close to the glass transition was not taken into account.

2. Theory

Steady-state properties of sheared dispersions result from a competition between Brownian
diffusion and flow with shear rate γ̇ . Their relative importance can be measured by the
bare Peclet number Pe0 = γ̇ D2/D0, where D0 is the short-time single-particle diffusion
coefficient and D the particle diameter. In the integration through transients (ITT) approach,
the competition between diffusion and flow enters into stationary expectation values via
generalized Green–Kubo relations that contain the complete transient time evolution of the
system. For the steady-state structure factor S(γ̇ )

q of density fluctuations under shearing in plain
Couette flow (v = γ̇ yx̂, neglecting velocity fluctuations and hence hydrodynamic interactions)
we find [13]

S(γ̇ )
q (γ̇ ) = 1

N
〈�∗

q�q〉 + γ̇

NkBT

∫ ∞

0
dt 〈σxy e�†t�∗

q�q〉 (1)

with Sq = 1
N 〈�∗

q�q〉 the equilibrium structure factor for wavevector q, and N the particle
number. Equilibrium averages are indicated by 〈· · ·〉. Equation (1) is formally exact, and non-
perturbative in γ̇ because the Smoluchowski operator � [14] depends on the shear rate. More
details of the general approach can be found in [13, 15]. The above expression is evaluated by
means of the Zwanzig–Mori projection operator formalism and by applying a mode-coupling
approximation [8]. This encodes the dynamics of the system in terms of transient density
correlation functions, which need to be calculated self-consistently. The vertex coupling the
quantities in equation (1) to density fluctuations contains1
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with Q = 1 − ∑
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q′ , and the average density �. With equation (3) from [13],

this finally yields the approximation for the distorted structure factor S(γ̇ )
q in the ITT approach:
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1 The factor 2 in equation (2) arises from Wick’s theorem assuming a Gaussian decoupling of the four-point
correlation, and from recognizing that only the fluctuating part δ�∗

q�q = �∗
q�q − 〈�∗

q�q〉 enters into equation (1).
Also, Baxter’s result limq′→0〈�∗

q�q�q′ 〉/(N Sq′ ) = Sq + �∂Sq/∂� is used [20], and evaluating the projector Q at
q′ = 0 we set 〈�q′ 〈�∗

q�q〉〉/〈�∗
q′ �q′ 〉 = Sq .
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where the advected wavevector and its norm are time dependent according to q(t) =
(qx, qy + qx γ̇ t, qz) and q(t) = |q(t)|. The abbreviation S′

q = ∂S
∂q enters. The correlators


q(t) = 〈�∗
q(t)e

�†t�q〉/(N Sq ) are the normalized transient density correlators. They describe
the relaxation of density fluctuations whose magnitude is the equilibrium one, whose time
dependence, however, is affected by shear flow. We refer to the second and to the third term
on the right-hand side of equation (3) as the anisotropic δS(γ̇ ,aniso)

q and the isotropic δS(γ̇ ,iso)
q

contribution to δS(γ̇ )
q , the deviation between the distorted and equilibrium structure factor.

For any shear rate γ̇ , only the isotropic contribution survives in the plane perpendicular to
the flow direction, namely for qx = 0. Computation of the distorted structure now requires
solution of the equations for 
q(t) from [13], which is difficult because of the anisotropic
structural rearrangements under shear. An expansion of equation (3) for small shear rates
circumvents this problem and gives the leading-order results for the distorted microstructure.
It requires only known (isotropic) equilibrium density correlators 
q(t) from standard MCT.
The expansion gives the anisotropic part in linear order and the isotropic one in quadratic order
in γ̇ :2
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Given the density and the equilibrium Sq , which also determine the quiescent MCT equations
used for calculating 
q(t), the distorted microstructure is obtained from equation (4) for small
shear rates. Note that to this order in γ̇ the expansion coefficients are well defined [9].
Equation (3) indicates that the (dressed) Peclet/Weissenberg number Pe, with Pe = γ̇ τ , is
the small parameter in the present expansion; here τ is the final (α-) relaxation time which
becomes arbitrarily large at the glass transition. The range of usefulness of equation (4) thus
shrinks rapidly when approaching vitrification. Yet, because the distortion in linear order has
been the topic of a number of theoretical approaches (see [11, 16, 17] and references therein),
a numerical evaluation of equation (4) appears useful.

3. Results

The numerical solutions to the quiescent MCT equations have been calculated using well-
established algorithms [18]. We used a similar discretization like [19] but with a refined q-grid
of 400 wavevectors, a spacing of q D = 0.1 and a cutoff of q D = 40. Throughout the analysis
a hard-sphere structure factor with a Percus–Yevick closure was used with a critical packing
fraction of φc = (π/6)�c D3 = 0.516 [8]. The critical packing fractions used for experiment
and Brownian dynamics simulation are φc = 0.58.

Figure 1 shows the normalized anisotropic contribution δS(γ̇ ,aniso)
q to the distorted structure

factor for packing fractions φ = 0.36, 0.44 and 0.46. Data taken from Brownian dynamics
simulations at φ = 0.43 and 0.5 from [11] are also included. In both cases the data were
divided by a factor γ̇ qx qy/q2, which is the origin of the trivial anisotropy in the leading linear

order. The distortion δS(γ̇ ,aniso)
q of the microstructure grows strongly with φ, because of the

approach to the glass transition. The δS(γ̇ ,aniso)
q is proportional to the α-relaxation time τ , as

proven in the left inset of figure 1. Here, τ is estimated from 
qp(t = τ ) = 0.1, where qp

2 A small correction arising from anisotropies in 
q(t) is neglected in the isotropic term.
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Figure 1. Anisotropic contribution to δS(γ̇ ,aniso)
q in leading order normalized to γ̇ qx qy/q2 (black

solid lines). Decreasing the relative separations from the critical point as ε = −0.2,−0.15,−0.1,

the magnitude of δS(γ̇ )
q increases. The dashed–dotted red curves are Brownian dynamics simulation

data from [11] using the same normalization at ε = −0.259,−0.138. The right inset shows the
unnormalized S(γ̇ )

q along the extensional axis qx = qy = q/
√

2 at ε = −0.1 and, from bottom to
top, Pe = γ̇ τ = 0 (green—solid), 1/8, 1/4 and 1/2 (all black—dashed), where 
qp (t = τ ) = 0.1
defines τ . Pe/Pe0 = 1.66 holds at this ε. The left inset shows the data of the main figure
rescaled with the dressed Peclet number, δS(γ̇ ,aniso)

q /(Pe qx qy/q2); for ε = −0.1,−0.05, and −0.01
(with increasing peak height) the values Pe/Pe0 = 1.66, Pe/Pe0 = 8.06, and Pe/Pe0 = 419 are
used.

denotes the position of the primary peak in Sq . The strongest shear dependence occurs for the
direction of the extensional component of the flow, qx = qy . Here, the mesoscale order of the

dispersion grows; the peak in δS(γ̇ ,aniso)
q increases and sharpens. While the theoretical δS(γ̇ ,aniso)

q

turns out rather symmetric around the peak of the quiescent structure factor (qp D ≈ 7.0), the
simulations exhibit a deeper negative dip at q > qp. Its origin is unclear, but it may arise in
part from small differences in the quiescent Sq used here and in [11] which are enlarged by the
derivative S′

q in equation (4). The simulations were actually not performed for a hard-sphere
system but rather for a screened Coulomb system and then mapped onto effective hard-sphere
volume fractions by comparing the resulting structure factors.

Figure 2 depicts the distorted structure factor S(γ̇ )
q in the plane perpendicular to the flow,

namely for qx = 0. There, only the isotropic term δS(γ̇ ,iso)
q contributes to leading quadratic

order in shear rate. The structure factor is somewhat decreased around the peak. Presumably,
because of the minute magnitude of this quadratic effect, experimental data have been obtained
only at higher Peclet numbers, where the shear dependence of the structural relaxation cannot
be neglected any longer. The neutron scattering measurements of [12] scale like γ̇ x with an
exponent 1/4 � x � 3/4 instead of 2. Nevertheless, the data are included in figure 2 in
order to test the qualitative contents of our results. The quadratic theoretical expression was
extrapolated beyond its limit of validity to the bare Peclet number Pe0 = 1/2, whereas the
experimental data correspond to shear rates Pe0 = 1.64–4.8 in the shear-thinning regime.
While the theories discussed in [11, 16] predict no change of the microstructure for qx = 0,
our results rationalize the experimental observations and are consistent with exact solutions in
the low-density limit [17].
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Figure 2. Normalized structure factor S(γ̇ )
q /Sq in the plane perpendicular to the flow direction,

qx = 0. It is given by 1 + δS(γ̇ ,iso)
q /Sq in leading quadratic order, and is calculated for Pe0 = 1/2

(black solid lines). The separation parameters are from bottom to top ε = −0.2,−0.15,−0.1.
Red lines are experimental data taken from [12] at ε = −0.207 (dashed–dotted), −0.155 (dotted),
−0.103 (long-dashed) and Pe0 = 1.64, 2.88, 4.8, respectively; all Peclet numbers lie outside the

expected range of validity of equation (4). The inset shows the unnormalized S(γ̇ )

qx =0 at ε = −0.1
and, from top to bottom, Pe = γ̇ τ = 0 (green—solid), 1/8, 1/4 and 1/2 (all black—dashed), where

qp (t = τ ) = 0.1 defines τ . Pe/Pe0 = 1.66 at this ε.

4. Discussion

The stationary structural correlations of a dense fluid of spherical particles undergoing
Brownian motion, neglecting hydrodynamic interactions, change with shear rate γ̇ in response
to a steady shear flow. In linear order, the structure is distorted only in the plane of the
flow, while already in second order in γ̇ , the structure factor changes under shear also for
wavevectors lying in the plane perpendicular to the flow. Consistent with previous theories,
we find regular expansion coefficients in linear and quadratic order in γ̇ for fluid (ergodic)
suspensions. While previous microscopic theories developed for higher densities predicted no
change of the microstructure for qx = 0 [11, 16], our approach does, which is in qualitative
agreement with experiments [12].

Our most important finding concerns the magnitude of the distortion of the microstructure,
and the dimensionless parameter measuring the effect of shear relative to the intrinsic particle
motion. This topic can already be discussed using the linear-order result, and is not affected
by considerations of hydrodynamic interactions, as can be seen from comparing Brownian
dynamics simulations [11] and experiments on dissolved particles [12]. In previous theories,
shear rate effects enter when the bare Peclet number Pe0 becomes non-negligible. In the present
ITT approach the dressed Peclet/Weissenberg number Pe = γ̇ τ governs the shear effects; here,
τ is the (final) structural relaxation time. Shear flow competes with structural rearrangements
that become arbitrarily slow compared to diffusion of dilute particles when approaching the
glass transition. The distorted microstructure results from the competition between shear
flow and cooperative structural rearrangements. It is thus no surprise that previous theories
using Pe0, which is characteristic for dilute fluids or strong flows, had severely underestimated
the magnitude of shear distortions in hard-sphere suspensions for higher packing fractions;
references [11, 16] report an underestimate by roughly a decade at φ = 0.50. The ITT
approach actually predicts a divergence of limγ̇→0(S(γ̇ )

q − Sq)/γ̇ for density approaching the
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glass transition at φc ≈ 0.58. We believe that the reassuring agreement of ITT results on S(γ̇ )
q

with data from simulations show that in the ITT approach the correct expansion parameter
Pe has been identified. We see this as support for the strategy introduced in [13] to connect
the nonlinear rheology of dense dispersions with the structural relaxation studied at the glass
transition.
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